Nitrogen fixation (acetylene reduction) in stony corals: evidence for coral-bacteria interactions

ثبت نشده
چکیده

Nitrogen fixation, as measured by acetylene reduct~on, has been detected to be associated with various hermatypic corals. Experiments were carried out on the massive coral Favia f a v u s both in situ and in the laboratory. Nitrogen fixation activity was found to be light dependent and fully inhibited by 5 X 10-6 M DCMU [3-(3,4-dichloropheny1)-1,l-dimethylurea Addition of glucose restored nitrogen fixation activity both in the dark and in the presence of DCMU. Removal of the coral tissue prevented acetylene reduction, while addition of glucose to the coral skeleton restored this activity. Bacteria isolated from the coral skeleton were found by dot blotting to contain the nif H gene. These results suggest that nitrogen-fixing bacteria found in the skeleton of corals benefit from organic carbon excreted by the coral tissue. The interaction between the nitrogen-fixing organisms and the coral may be of major lrnportance for the nitrogen budget of the corals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nitrogen fixation in the mucus of Red Sea corals.

Scleractinian corals are essential constituents of tropical reef ecological diversity. They live in close association with diazotrophs [dinitrogen (N2)-fixing microbes], which can fix high rates of N2. Whether corals benefit from this extrinsic nitrogen source is still under debate. Until now, N2 fixation rates have been indirectly estimated using the acetylene reduction assay, which does not p...

متن کامل

Vibrios dominate as culturable nitrogen-fixing bacteria of the Brazilian coral Mussismilia hispida.

Taxonomic characterization was performed on the putative N(2)-fixing microbiota associated with the coral species Mussismilia hispida, and with its sympatric species Palythoa caribaeorum, P. variabilis, and Zoanthus solanderi, off the coast of São Sebastião (São Paulo State, Brazil). The 95 isolates belonged to the Gammaproteobacteria according to the 16S rDNA gene sequences. In order to identi...

متن کامل

Discovery of symbiotic nitrogen fixation and chemoautotrophy in cold-water corals

Cold-water corals (CWC) are widely distributed around the world forming extensive reefs at par with tropical coral reefs. They are hotspots of biodiversity and organic matter processing in the world's deep oceans. Living in the dark they lack photosynthetic symbionts and are therefore considered to depend entirely on the limited flux of organic resources from the surface ocean. While symbiotic ...

متن کامل

Assessing the effects of iron enrichment across holobiont compartments reveals reduced microbial nitrogen fixation in the Red Sea coral Pocillopora verrucosa

The productivity of coral reefs in oligotrophic tropical waters is sustained by an efficient uptake and recycling of nutrients. In reef-building corals, the engineers of these ecosystems, this nutrient recycling is facilitated by a constant exchange of nutrients between the animal host and endosymbiotic photosynthetic dinoflagellates (zooxanthellae), bacteria, and other microbes. Due to the com...

متن کامل

Nitrogen Fixation Aligns with nifH Abundance and Expression in Two Coral Trophic Functional Groups

Microbial nitrogen fixation (diazotrophy) is a functional trait widely associated with tropical reef-building (scleractinian) corals. While the integral role of nitrogen fixation in coral nutrient dynamics is recognized, its ecological significance across different coral functional groups remains yet to be evaluated. Here we set out to compare molecular and physiological patterns of diazotrophy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006